Vascular ENaC proteins are required for renal myogenic constriction.
نویسندگان
چکیده
The myogenic response is an essential component of renal blood flow autoregulation and is the inherent ability of vascular smooth muscle cells (VSMCs) to contract in response to increases in intraluminal pressure. Although mechanosensitive ion channels are thought to initiate VSMC stretch-induced contraction, their molecular identity is unknown. Recent reports suggest degenerin/epithelial Na(+) channels (DEG/ENaC) may form mechanotransducers in sensory neurons and VSMCs; however, the role of DEG/ENaC proteins in myogenic constriction of mouse renal arteries has not been established. To test the hypothesis that DEG/ENaC proteins are required for myogenic constriction in renal vessels, we first determined expression of ENaC transcripts and proteins in mouse renal VSMCs. Then, we determined pressure- and agonist-induced constriction and changes in vascular smooth muscle cytosolic Ca(2+) and Na(+) in isolated mouse renal interlobar arteries following DEG/ENaC inhibition with amiloride and benzamil. We detect alpha-, beta-, and gammaENaC transcript and protein expression in cultured mouse renal VSMC. In contrast, we detect only beta- and gamma- but not alphaENaC protein in freshly dispersed mrVMSC. Selective DEG/ENaC inhibition, with low doses of amiloride and benzamil, abolishes pressure-induced constriction and increases in cytosolic Ca(2+) and Na(+) without diminishing agonist-induced responses in isolated mouse interlobar arteries. Our findings indicate that DEG/ENaC proteins are required for myogenic constriction in mouse interlobar arteries and are consistent with our hypothesis that DEG/ENaC proteins may be components of mechanosensitive ion channel complexes required for myogenic vasoconstriction.
منابع مشابه
Yes, no, maybe so: ENaC proteins as mediators of renal myogenic constriction.
The myogenic response is an intrinsic vascular response characterized by vasoconstriction in response to increases and vasodilation to decreases in perfusion pressure. Recent studies suggest this response may play a significant role in the protection of the renal microcirculation from pressure dependent injury, especially with concomitant renal disease.1 Although the myogenic response was first...
متن کاملENaC Proteins as Mediators of Renal Myogenic Constriction
The myogenic response is an intrinsic vascular response characterized by vasoconstriction in response to increases and vasodilation to decreases in perfusion pressure. Recent studies suggest this response may play a significant role in the protection of the renal microcirculation from pressure dependent injury, especially with concomitant renal disease.1 Although the myogenic response was first...
متن کاملAltered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.
Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown wheth...
متن کاملDietary salt enhances benzamil-sensitive component of myogenic constriction in mesenteric arteries.
Recent work from our laboratory indicates that epithelial Na(+) channel (ENaC) function plays an important role in modulating myogenic vascular reactivity. Increases in dietary sodium are known to affect vascular reactivity. Although previous studies have demonstrated that dietary salt intake regulates ENaC expression and activity in epithelial tissue, the importance of dietary salt on ENaC exp...
متن کاملDegenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor.
Mechanosensitive ion channels are thought to mediate stretch-induced contraction in vascular smooth muscle cells (VSMCs); however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although recent reports suggest degenerin/epithelial Na+ channel (DEG/ENaC) proteins may be mechanosensors in sensory neurons, their role as mechanosensors in vascular tissue has not been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005